

 Navigation

 	
 index

 	
 next |

 	Nanbando 0.1 documentation

Welcome to Nanbando’s documentation!

Nanbando is a simple application to automate website backups. It provides an elegant way to extend and configure the
backup parts. Nanbando has built-in support for various storage’s and provides easy to use sync and fetch operations. It
was built with modularity, extensibility and simplicity in mind.

Requirements

	PHP: ^5.6 || ^7.0

	ext-xml

	ext-curl

	ext-mbstring

	ext-zip

[image: _images/logo.png]

Contents

	Installation

	Usage

	Configuration
	Global Configuration

	Local Configuration

	Plugins
	Usage

	Available Plugins

	Cookbook
	How to backup a Sulu application?

	Extending
	Bundle

	Plugins

	Events

	Presets

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2016, Johannes Wachter.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Nanbando 0.1 documentation

Installation

To install the application simply download the executable and move it to the global bin folder.

wget http://nanbando.github.io/core/nanbando.phar
wget http://nanbando.github.io/core/nanbando.phar.pubkey
chmod +x nanbando.phar
mv nanbando.phar /usr/local/bin/nanbando
mv nanbando.phar.pubkey /usr/local/bin/nanbando.pubkey

After first installation you can update the application with a built-in command.

nanbando self-update

Note

The executable is signed with a OpenSSL private key. This ensures the origin of the build.

Check the configuration state of your application by using the command nanbando check.

 Copyright 2016, Johannes Wachter.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Nanbando 0.1 documentation

Usage

Before we can start to create backup-projects we have to configure the local and remote storage. This global
configuration will be shared for all projects of the executing user. The configuration will be written in the file
~/.nanbando.yml.

nanbando:
 storage:
 local_directory: "%home%/nanbando/local"
 remote_service: filesystem.remote

oneup_flysystem:
 adapters:
 remote:
 local:
 directory: "%home%/nanbando/remote"

 filesystems:
 remote:
 adapter: remote
 alias: filesystem.remote
 plugins:
 - filesystem.list_files

Note

In the configuration you can use the parameter %home% which points to the home directory of the current user.

The application contains a simple directory backup plugin which we will use in this simple usage example. To start a new
backup goto the root directory of your website and create a file named nanbando.json which contains the
configuration and later also the dependencies for this backup-project.

{
 "name": "application",
 "backup": {
 "data": {
 "plugin": "directory",
 "parameter": {
 "directory": "path/to/data/directory"
 }
 }
 },
 "require": {
 }
}

After you have created this file you can run following command to configure the local installation with the given
configuration. If you have added requirements to the configuration the application will install them into the folder
.nanbando.

Note

For readonly filesystems you can overwrite the folder .nanando by setting the environment variable
NANBANDO_DIR.

php nanbando.phar reconfigure
php nanbando.phar backup

The second command will create a new backup zip in the local folder
~/nanbando/local/application/<date>_<environment>_<label>.zip. The environment and the label are optional and will
be omitted if not exists (e.g. without environment <date>_<label>.zip or without label and environment
<date>.zip).

Note

The environment can be set via the config file "environment" or env-variable NANBANDO_ENVIRONMENT.
Example: NANBANDO_ENVIRONMENT=prod php nanbando.phar backup.

After this steps you can do following steps:

	php nanbando.phar restore - restore a local backup

	php nanbando.phar push - push backups to remote storage

	php nanbando.phar fetch - fetch a backup on a different machine to restore it there

 Copyright 2016, Johannes Wachter.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Nanbando 0.1 documentation

Configuration

The configuration is devided into two parts - global (optional) and project configuration.

Warning

After changing configuration please run command reconfigure to be sure that the configuration will be used for
recreating the symfony container.

Global Configuration

The global congfiguration is placed in the user home directory. This will be used for all projects used by the user.
Put this configuration into ~/.nanbando.yml.

nanbando:
 storage:
 local_directory: "%home%/nanbando"
 remote_service: filesystem.remote

oneup_flysystem:
 adapters:
 remote:
 local:
 directory: "%home%/nanbando/remote"

 filesystems:
 remote:
 adapter: remote
 alias: filesystem.remote
 plugins:
 - filesystem.list_files

Note

The configuration documentation for the oneup_flysystem can be found on github OneupFlysystemBundle [https://github.com/1up-lab/OneupFlysystemBundle/blob/master/Resources/doc/index.md#step3-configure-your-filesystems].

For nanbando you have to define the local directory, where the backup command can place the backup archives, and the
remote filesystem-service which can be configured in the oneup_flysystem extension.

By default the local_directory will be set to %home%/nanbando and the remote_service will be null. This
leads to local backups will work out of the box but all commands (fetch, push) which needs the remote-storage
will be disabled.

Local Configuration

The local configuration contains the name, backup configuration and the additional Plugins.

{
 "name": "application",
 "parameters": {
 "directory": "path/to/data/directory"
 },
 "backup": {
 "data": {
 "plugin": "directory",
 "parameter": {
 "directory": "%directory%"
 }
 }
 },
 "require": {
 }
}

The backup section can contain as much parts as needed. Each plugin can provide its own parameter structure.

Note

The section parameters can be used to define global parameters which can be used in the plugin configuration.
To import files place them in the imports array. This can be used to reuse the symfony-application parameter.

 Copyright 2016, Johannes Wachter.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Nanbando 0.1 documentation

Plugins

Nanabando was written with extensibility (see Extending) in mind. To keep the core as small as possible
only one plugin is included in the application. But nanbando also provides optional plugins which can be installed by
each backup-project.

Usage

You can use a plugin by adding it to the nanbando.json file. There you can configure it like other composer [https://getcomposer.org/]
projects in the require section of the file.

{
 "name": "application",
 "backup": {
 "su_standard": {
 "plugin": "mysql",
 "parameter": {
 "username": "root",
 "database": "your_database"
 }
 }
 },
 "require": {
 "nanbando/mysql": "dev-master"
 }
}

To install this plugin run the reconfigure command. It will install the plugin with the embedded-composer [https://github.com/dflydev/dflydev-embedded-composer] and
reconfigure the local application. After that you can run the backup command to backup the database and restore
to restore the database.

Available Plugins

This list of plugins is currently quite small but there should be more plugins soonish.

	nanbando/mysql - This plugin backups your mysql-database with the mysqldump command

	nabando/jackrabbit - This plugin will backups your jackrabbit data by exporting into xml

	nabando/sulu - This plugin provides presets and auto-detection for sulu applications

 Copyright 2016, Johannes Wachter.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Nanbando 0.1 documentation

Cookbook

The Cookbook covers some applications and how nanbando can be used to backup the data of this applications.

	How to backup a Sulu application?

 Copyright 2016, Johannes Wachter.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Nanbando 0.1 documentation

 	Cookbook

How to backup a Sulu application?

Note

To simplify the backup configuration for sulu-applications you can use the Sulu Plugin [https://github.com/nanbando/sulu].

You can use the following configuration to backup the application using jackrabbit as phpcr backend.

{
 "name": "test-application",
 "imports": [
 "app/config/parameters.yml"
],
 "parameters": {
 "jackrabbit_uri": "http://localhost:8080/server/"
 },
 "backup": {
 "uploads": {
 "plugin": "directory",
 "parameter": {
 "directory": "var/uploads"
 }
 },
 "database": {
 "plugin": "mysql",
 "parameter": {
 "username": "%database_user%",
 "password": "%database_password%",
 "database": "%database_name%"
 }
 },
 "cmf": {
 "plugin": "jackrabbit",
 "parameter": {
 "jackrabbit_uri": "%jackrabbit_uri%",
 "workspace": "%phpcr_workspace%",
 "path": "/cmf"
 }
 },
 "versions": {
 "plugin": "jackrabbit",
 "parameter": {
 "jackrabbit_uri": "%jackrabbit_uri%",
 "workspace": "%phpcr_workspace%",
 "path": "/jcr:versions"
 }
 },
 "cmf_live": {
 "plugin": "jackrabbit",
 "parameter": {
 "jackrabbit_uri": "%jackrabbit_uri%",
 "workspace": "%phpcr_workspace%_live",
 "path": "/cmf"
 }
 }
 },
 "require": {
 "nanbando/mysql": "dev-master",
 "nanbando/jackrabbit": "dev-master"
 }
}

Note

This configuration is optimized for Sulu (minimal) version ^1.3 with the drafting feature. If you want to
backup earlier versions you can omit the backup section cmf_Live. For the standard edition you have to
adapt the path to the uploads directory.

If you use mysql as data storage for phpcr you can remove the cmf, cmf_live and versions part
of the backup.

{
 "name": "test-application",
 "imports": [
 "app/config/parameters.yml"
],
 "backup": {
 "uploads": {
 "plugin": "directory",
 "parameter": {
 "directory": "uploads"
 }
 },
 "database": {
 "plugin": "mysql",
 "parameter": {
 "username": "%database_user%",
 "password": "%database_password%",
 "database": "%database_name%"
 }
 }
 },
 "require": {
 "nanbando/mysql": "dev-master"
 }
}

 Copyright 2016, Johannes Wachter.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Nanbando 0.1 documentation

Extending

Nanbando makes you easy to hook into the application. You can use one
of the following possibilities to extend nanbando.

	Bundle
	Composer

	Puli

	Bundle Class

	Plugins

	Events
	Backup

	Restore

	Presets

 Copyright 2016, Johannes Wachter.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Nanbando 0.1 documentation

 	Extending

Bundle

All begins with a bundle. The application uses Symfony Bundles
to build the environment. The bundles will be discovered by
puli. And loaded by composer. So you can guess which parts
are mandatory to hook into nanbando.

You can take a look into a already existing nanbando-bundle
like Mysql Plugin [https://github.com/nanbando/mysql].

Composer

Create a composer.json file and register the repository on
packagist [https://packagist.org/].

Puli

Puli uses a simple configuration file in json form so create
a basic puli.json file with following content.

{
 "version": "1.0",
 "name": "<name>",
 "bindings": {
 "<uuid>": {
 "_class": "Puli\\Discovery\\Binding\\ClassBinding",
 "class": "<bundle-class>",
 "type": "nanbando/bundle"
 }
 }
}

Bundle Class

A Symfony Bundle [http://symfony.com/doc/current/bundles.html] is simply a structured set of files within a directory
that implement a single feature.

<?php

namespace Acme\TestBundle;

use Symfony\Component\HttpKernel\Bundle\Bundle;

class AcmeTestBundle extends Bundle
{
}

In nanbando the bundle can contain a plugin (for backup tasks) or any other
extension like event-listener or commands.

 Copyright 2016, Johannes Wachter.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Nanbando 0.1 documentation

 	Extending

Plugins

Plugins are symfony-services tagged with <tag name="nanbando.plugin" alias="{alias}"/> inside a Bundle. The
alias can be used in the Local-Configuration.

 <service id="plugins.mysql" class="Nanbando\Plugin\Mysql\MysqlPlugin">
 <argument type="service" id="output"/>
 <argument type="service" id="temporary_files"/>

 <tag name="nanbando.plugin" alias="mysql"/>
</service>

 Copyright 2016, Johannes Wachter.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Nanbando 0.1 documentation

 	Extending

Events

Nanbando issues events which can be listened to by using the standard
symfony event dispatcher. You can register a listener in your
dependency injection configuration as follows:

<service id="nanbando_mysql.event_listener.backup" class="Nanbando\Plugin\Mysql\EventListener\BackupListener">
 <tag name="kernel.event_listener" event="<event_name>" method="methodToCall" />
</service>

Backup

The backup fires the event nanbando.pre_backup before the
process starts and nanbando.post_backup after the backup
is finished.

The main event is nanbando.backup which does the magic and
backup the data.

Restore

The backup fires the event nanbando.pre_restore before the
process starts and nanbando.post_restore after the backup
is finished.

The main event is nanbando.restore which does the magic and
restores the data.

 Copyright 2016, Johannes Wachter.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	Nanbando 0.1 documentation

 	Extending

Presets

Presets are an easy way to integrate your application (e.g. Sulu Plugin [https://github.com/nanbando/sulu]) into the nanbando system.
Presets are backup-configurations for specific applications and versions.

Inside a bundle the extension is able to prepend presets for different applications, versions and options.

<?php

namespace Nanbando\Plugin\Sulu\DependencyInjection;

use Symfony\Component\DependencyInjection\ContainerBuilder;
use Symfony\Component\DependencyInjection\Extension\Extension;
use Symfony\Component\DependencyInjection\Extension\PrependExtensionInterface;

/**
 * Integrates sulu presets into nanbando.
 */
class NanbandoSuluExtension extends Extension implements PrependExtensionInterface
{
 /**
 * {@inheritdoc}
 */
 public function prepend(ContainerBuilder $container)
 {

 $container->prependExtensionConfig(
 'nanbando',
 [
 'presets' => [
 [
 'application' => 'sulu',
 'version' => '*',
 'backup' => [
 'database' => [
 'plugin' => 'mysql',
 'parameter' => [
 'username' => '%database_user%',
 'password' => '%database_password%',
 'database' => '%database_name%',
],
],
],
],
]
);
 }

 /**
 * {@inheritdoc}
 */
 public function load(array $configs, ContainerBuilder $container)
 {
 }
}

 Copyright 2016, Johannes Wachter.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	Nanbando 0.1 documentation

Index

 Copyright 2016, Johannes Wachter.
 Created using Sphinx 1.3.5.

 _static/comment-close.png

_static/comment.png

_static/ajax-loader.gif

_static/down.png

_static/file.png

_static/plus.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/comment-bright.png

_images/logo.png

